III JORNADA GANADERÍA Y MEDIO AMBIENTE

Ganadería y gases de efecto invernadero

20 de octubre de 2016

Salón de actos del Ministerio de Agricultura, Alimentación y Medio Ambiente Pza. San Juan de la Cruz, s/n. Madrid

TECNICAS DE MITIGACION DE GEI EN GANADERIA (II)

Actuaciones en instalaciones ganaderas y almacenamiento de las deyecciones

Pilar Merino Pereda, Investigadora. NEIKER-Tecnalia

INDICE

- 1. Consideraciones generales
- 2. Actuaciones en alojamiento
- 3. Actuaciones en almacenamiento
- 4. Conclusiones

NH₃

GEI

nature climate change

REVIEW ARTICLE

PUBLISHED ONLINE: 21 MARCH 2016 | DOI: 10.1038/NCLIMATE2925

Greenhouse gas mitigation potentials in the livestock sector

Mario Herrero^{1*}, Benjamin Henderson¹, Petr Havlík², Philip K. Thornton^{1,3}, Richard T. Conant⁴, Pete Smith⁵, Stefan Wirsenius^{1,6}, Alexander N. Hristov⁷, Pierre Gerber^{8,9}, Margaret Gill⁵, Klaus Butterbach-Bahl^{10,11}, Hugo Valin², Tara Garnett¹² and Elke Stehfest¹³

The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.56tCO₂e yr³. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

he livestock sector is large. Twenty billion animals make use of 30% of the terrestrial land area for grazing, one-third of global cropland area is devoted to producing animal feed¹ and 32% of Here we review the mitigation potential of a number of field-tested management options for mitigating GHG emissions in livestock production. Our Review incorporates new supply-side information,

Herrero et al., 2016

NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2925

REVIEW ARTICLE

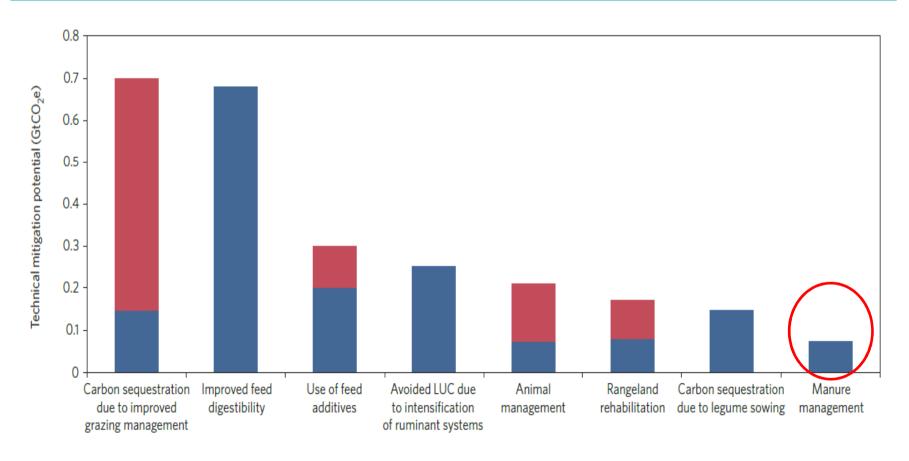
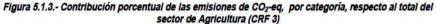
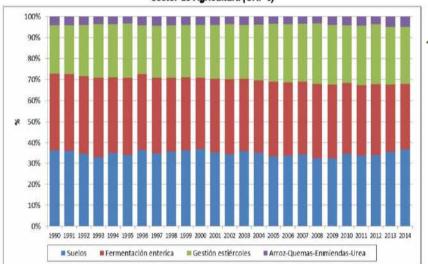
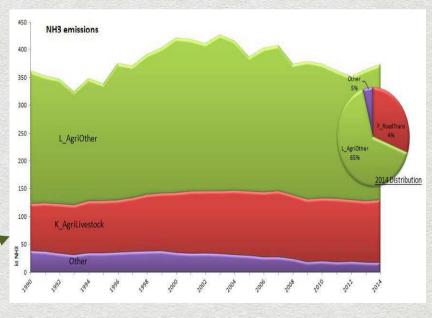




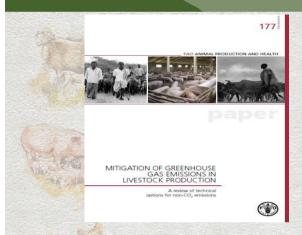
Figure 3 | Technical mitigation potentials of supply-side options for reducing emissions from the livestock sector. Red represents the range for each



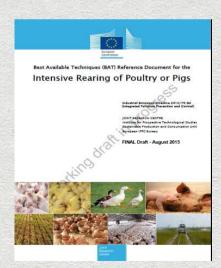
Inventario nacional gases invernadero España 1990-2014 (Edición 2016)

NH3

Spain. Informative Inventory Report 1990-2014 (Edición 2016)


TABLE AZ

Manure handling strategies offering non-CO₂ greenhouse gas mitigation opportunities


Category	Species	Potential CH, mitigating effect*	Potential N. O miligating effect*	exempl NH, mitigating effect	Effective*	Recommended*	Applicability to
Dietary manipulation and nutri	ent balance	1.04	62.0 mm	AL WEST	100000000000000000000000000000000000000		1MIV
Reduced dietary protein	AS	75	Medium	High	Yes (N.O. NH.)	Yes (N,O, NHa)	All
High filtre diets	SW	tow	High	77 (ST-201)	Yes (NoC)	Yes (NED)	A1)
Grazing management							
Grazing intensity"	AR	7	High?"	7.7	Yes (NyC)	Yes (NyO)	All
Housing							
Biafiltration	AS	LowP	7	High	Vos (MHs.	Yes (NH, CH.2)	All
Manure system ^a	DC, BC, FW	High	7	High	Yes (OH WHI)	Vet (CH., NH.)	All
Manure treatment							
Anaerobic digestion	DC, SC, SW	High	High	Increase 7%	Yes (CH. N50)	Wes (CHs, McO)	All
Solids separation	DC.BC	High	Low?"	y 44	Yes (CHa)	Yes (CH2)	NASAEU, OC
Aeration	DC, BC	High	Increase ^{21.4}	712	Yes (CH ₄)	Yes (CHJ)	NA,SA, FU
Manure ad diffication	DC, BC, SW	High	7**	High*	Yes (CH., NH.)	Yes (CH ₆ , NH ₆)	NA,EU,OC
Manure storage					1771-1771-1770-1770	1-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
Decreased storage time	DC, BC, SW	High	High*	High**	Was Calls	Ves (all)	All
Storage cover with straw	DC. BC. SW	High	Increase?**	High	YES (CHA. NHS)	Yes (CH.)	NA.EU
Natural or induced arust	DC, BC	High	Increase ²⁴⁶	High	Yes (CHL NH)	Yes(OI)	NALEU
Agration during liquid manure storage	DC, BC, SW	Medium to High	Increase713	912	Vas (CH ₄)	Yes (CH.)	NA,EU
Composting	DC, BC, SW	High	213	Increase ¹²	Vec (CH ₄)	Yes (CH ₄)	All
Litter stacking	PO	Medium	N/A	1	Yes (CH4)	Yes (CHA)	.441
Stora ge temperature	DC, RC	High	7	High	Yes (CH., NH.)	Vec (CH., NH.)	N/A ⁷⁹
Manure application		100,000		199701			
Manure injection vs surface application	DC, BC, SW	No effect to increase?	No effect to	High	Yes (NH ₂)	Yes (NH:)	NA.EU.OC
Timing of application	AS	Low	High ^{er}	High	Yes (N2O, NH1)	Yes (N) O, NHO	All
Sal cover, cover cropping	45	*	No effect to High?	Increase 74	Y# € (N, C) 7)	Yes (NJCI7)	Δ)1
Soil nutrient balance	AS	N/A	High	High	Yes (N2O, NH3)	Yes (N2O, NH2)	All
Natratication inhibitor**							
Applied to manure or after urine deposition in pastures	DC, BC, SH	N/A.	High	N/A	Yes (N ₂ O)	Yes (N/O)?	All #

(Cond.)

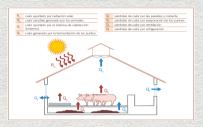
FAO, 2013

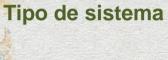
IRPP, 2015

GRA, 2014

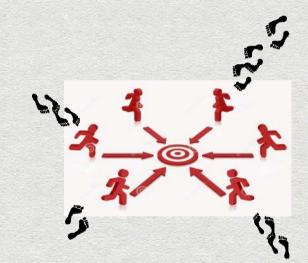
MAGRAMA, 2014

EVALUACIÓN DE TÉCNICAS DE REDUCCIÓN DE EMISIONES EN GANADERÍA

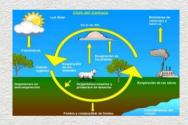

SECTORES DE PORCINO Y AVICULTURA DE CARNE Y PUESTA

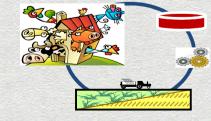

Categoría animal Intensivo? Extensivo? Semiintensivo?

Estrategia



Instalaciones





Manejo ganadero

Condiciones edafoclimáticas

Combinación de estrategias

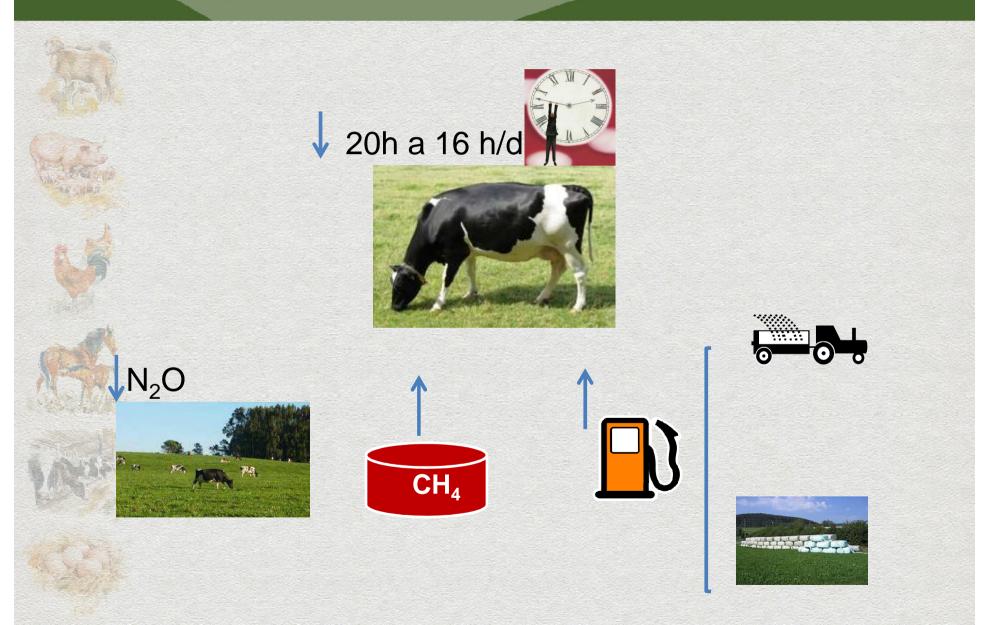

Entorno geográfico y social

Table 4.7 Qualitative assessment of factors that affect the implementation of EU policies to decrease N_r emissions: NO_x emissions from combustion, NH₃ emissions and NO₃ leaching from agriculture, and N_{tot} discharges from urban wastes

	Combustion	Agriculture		Urban wastes
Factors	NO _x to air	NH ₃ to air	NO ₃ to waters	N _{tot} to waters
Policy instruments	Mixed	Regulation	Regulation	Mixed
Number of stakeholders	Few	Many	Many	Few
Technology level	Advanced	Modest	Modest	High
Level of standardization in production	High	Low	Low	High
Number of techniques involved	Few	Many	Many	Few
Development costs	High	High	High	High
Implementation costs	Modest	Modest for animal feeding and manure application; high for animal housings and manure storages	Low for optimizing fertilizer applications; high for adjusting farming systems	High
Who bears costs?	Manufacturers, but transferred effectively to consumers	Farmer	Farmer + public sector (RDP)	Water companies, but effectively transferred to consumers
Management activities & knowledge involved	Essentially no activities required by car drivers	Many activities, requires both proper techniques and information and knowledge	Many activities, requires information and knowledge	Many activities, requires both proper techniques and information and knowledge
Influence of climate & soil conditions	Absent	Large	Large	Negligible
Potential side-effects (apart from costs)	Increased N₂O and NH₃ emissions	Increased N₂O emissions and energy use; fertilizer savings	Yield loss; fertilizer saving; increased / decreased NH ₃ emissions	Increased N₂O emissions and energy use

INTERACTIONS AMONG FEEDING PRACTICES, MANURE STORAGE AND LAND APPLICATION

TABLE AS (Cont.)

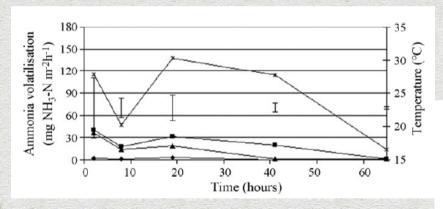
Examples of interactions among non-CO2 greenhouse gas mitigation practices'

litigation practice	Potential interactions	Production system to which interaction may be applicable
An aerobic digestion	Can increase NH ₃ emission during manure storage and application of manure liquor.	RÇ MI, MM, MB
Grazing management (intensity, stand-off pads)	Grazing intensity – same effects as for enteric CH ₄ . Stand-off pads: main effect on reducing N ₂ O emission from urine patches, but can also increase CH ₄ in manure deposited in anaerobic conditions. May reduce fertilizer use.	R M, RG
Decreased manure storage time	Directly reduces all gaseous emissions from manure storage. Possible increase in N_2O emissions when manure is applied to soil. Shorter storage time means more frequent soil application: may have both positive and negative effects on GHG emissions from soil, depending on season	RC, RM, MI, MM, MB
Natural or induced manure crust	ral or induced manure crust Direct reduction of CH ₄ emission. Also reduces NH ₃ emissions, but may increase N ₂ O emissions.	
Composting	Reduces CH ₄ and perhaps N ₂ O emissions, but increases NH ₂ emissions and total manure N losses. Overall GHG emission reduction effect.	
Acidification and decreasing manure temperature (storing outside incold climate zones)	Will generally reduce NH_3 and CH_4 emissions; interaction effects weak or not well understood.	RC, RM, MI, MM
Sealed storage with flare	Effectively mitigates CH ₄ emissions, but may increase NH ₃ emission during storage and so il application of manure liquor.	RÇ MI, MM, MB
Subsurface manure incorporation	Main effect is to decrease N_2O emissions; it may also decrease NH_3 losses, thus reducing the need for N fertilizer. May create localized anaerobic conditions and thus result in increased CH_4 emissions.	RC, RM, MI, MM, MB
Soil cover, cover cropping Main effect is to enhance uptake of nitrates by plants resulting in lower N2O emissions, but results have been inconsistent; could lead to higher overall N2O loss in high rainfall systems and there are significant interactions with other soil conservation practices (no-tillage, for example).		RC, RM, MI, MM, MB
Nitrification inhibitors	Can increase NH ₂ emissions, depending on manure storage. Can increase forage and pasture production (or displace N fertilizer).	RC, RM, RG, MI, MM, MB
Urease inhibitors	Reduce NH ₃ losses, but can increase N₂O emissions.	RC, MI

¹ This table is constructed on the basis of discussions about mitigation practices among FAO experts and the authors of this document.

² Animal production system: RC = ruminants, confined; RM = ruminants, mixed; RG = ruminants, grazing; MI = monogastrics, industrial (large scale, all concentrate feed, commercial); MM = monogastrics, intermediate (medium scale, feeding is with concentrate and by-products, commercial); MB = backyard (mostly fed on swill and browsing, not commercial).

Dieta y emisiones de NH₃ y N₂O



Concentration	LP	MP	HP
NH ₃ , mg m ⁻³	7.1 ^a	10.4 ^b	10.8 ^b
N ₂ O, mg m ⁻³	1.21 ^a	1.08a	1.11ª

Effect of diet manipulation in dairy cow N balance and nitrogen oxides emissions from grasslands in northern Spain

H. Arriaga ^{a,*}, G. Salcedo ^b, S. Calsamiglia ^c, P. Merino ^a Agriculture, Ecosystems and Environment 123 (2008) 88–94

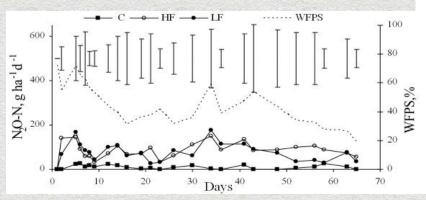


Table 3 N excretion in milk, urine and faeces Diet A Diet B Urine (total N) (g d⁻¹) 153.5a 128.5b Faeces (total N) (g d⁻¹) 144.8b 162.8a Urine urea-N, (g d⁻¹) 91.2a 104.9 MUN (mg of N d 1^{-1}) 7.7a ^aMP from bact (g d⁻¹) 962b 1207a Milk N $(g d^{-1})$ 87.6b 103a Milk $(l d^{-1})$ 17.7b 20.8a

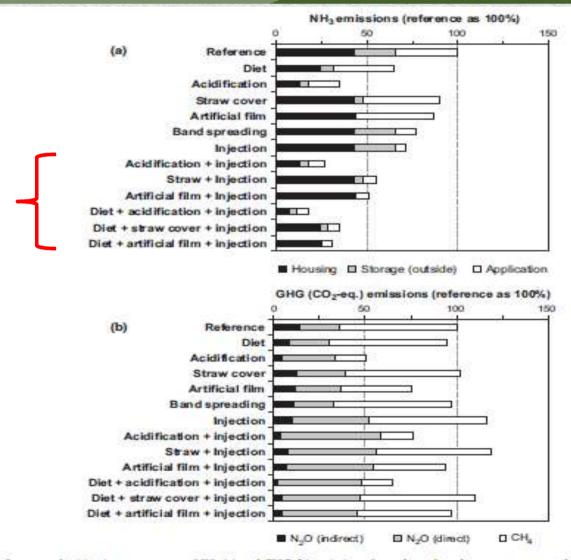


Fig. 4 Impacts of mitigation measures on NH₃ (a) and CHG (b) emissions from shurry-based systems, expressed as percentage of the reference system. See Table 2 for description of scenarios.

2. ALOJAMIENTO GANADERO. MITIGACION NH₃

- 1. Limpieza frecuente, reducción área deposiciones
- 2. Reducir velocidad aire y temperatura
- 3. Reducir pH y temperatura
- 4. Secado
- 5. Lavado del aire de salida
- 6. Aumentar tiempo en pastoreo

Bittman, S., Dedina, M., Howard C.M., Oenema, O., Sutton, M.A., (eds), 2014, Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen, Centre for Ecology and Hydrology, Edinburgh, UK

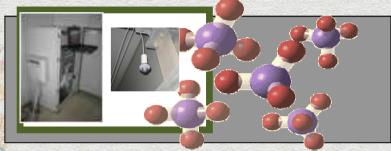
Emisiones de NH₃ y GEI en un alojamiento avícola de puesta

Alberdi O, Arriaga H, Calvet S, Estelles F, Merino P

Bios ystems Engineering144 (2016) 1-12

- •Granja comercial
- •250.000 gallinas
- Alimentación por fases

- •52.000 gallinas
- •Recogida de deyecciones en cintas



neiker

ALOJAMIENTO

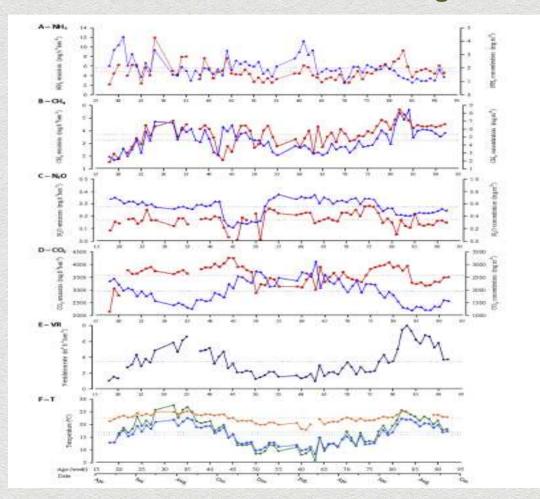
1.Medidas [gases]

3. Registro T^a y humedad

5. Análisis excretas

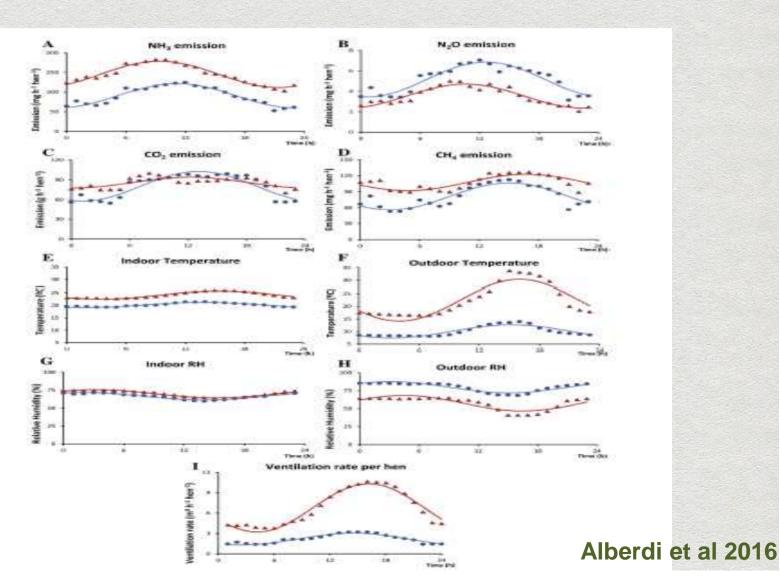
2. Registro de la ventilación

4. Registro de presión diferencial

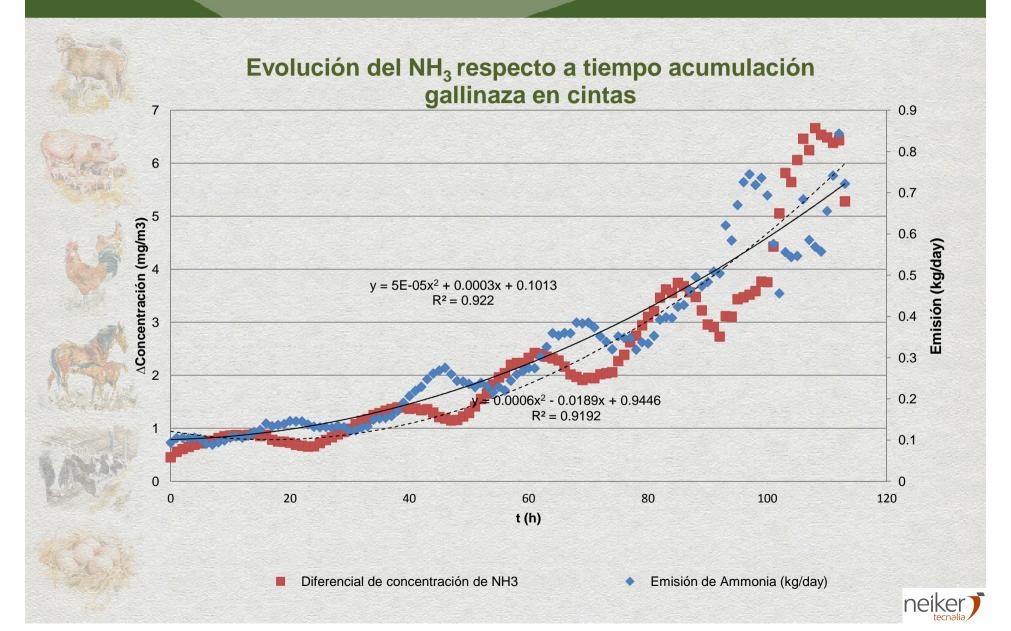


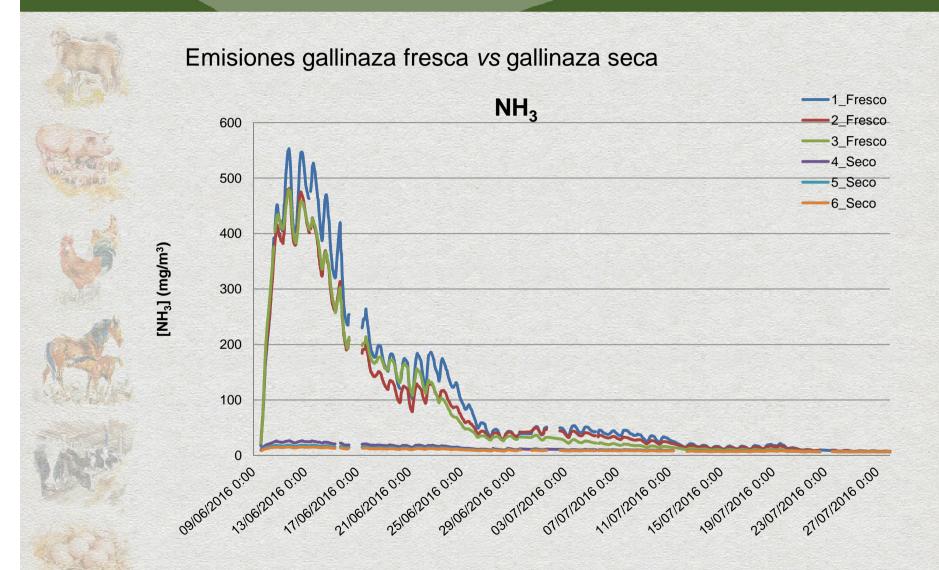
6. Registro de manejo y producción

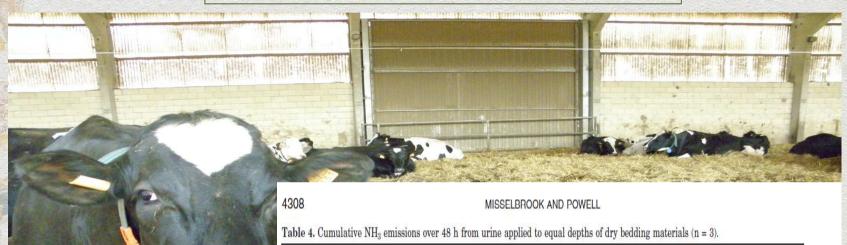
Patrón diario de emisiones a lo largo del ciclo


T^a, dias acumulación, ventilación

Alberdi et al 2016




Patrón diario de emisiones en verano e invierno




Alojamiento-Material de cama

	Chopped straw	Sand	Pine shavings	Chopped newspaper	Chopped corn stalks	Recycled manure solids	SED ¹
Dry bedding added to chamber, kg/m	$0.5^{\rm b}$	19.8ª	1.1 ^b	0.5 ^b	0.5 ^b	1.4 ^b	1.0
Liquid added to bedding expressed as a proportion of the absorbance capacity	2.4ª	$0.7^{\rm d}$	1.3°	$2.0^{\rm b}$	2.5ª	$0.6^{\rm d}$	0.2
NH ₃ emission, g of NH ₃ N/m	10.2^{ab}	5.3°	7.8^{bc}	11.4ª	12.7ª	12.1 ^a	1.2
NH ₃ emission, % urine N	55^{ab}	28°	42bc	62ª	68 ^a	65^{a}	6
Urine N remaining on bedding after 48 h, mg/g of dry bedding	15.1 ^a	$0.7^{\rm d}$	$10.0^{\rm b}$	14.7ª	10.9 ^b	5.0°	1.4

 $^{^{}a,b,c,d}$ Within rows, values with different superscripts differ significantly (P < 0.05).

¹SED = standard error of the difference of the means

Category 1 technique (unless specified cat. 2)	NH ₃ emission (kg NH ₃ / place/year)	Emission reduction (%)	Extra cost (€/place/ year)ª	Extra cost (€/kg NH ₃ -N reduced)
Gestating sows	4.20			
Frequent manure removal with vacuum system		25	5 0	· 0
Flushing gutters		40	3:	3 23
Cooling manure surface		45	5 19	9 13
(Group) housing with feeding stalls and manure pit with slanted walls		45	5 10	5 10
Floating balls on manure surface (cat. 2)		25	1-	1 10
Air scrubbing techniques		70-90	22-30	8-10
Lactating Sows	8.30		1.000.000	
Water and manure channel		50) 1	0.5
Manure pan underneath		65	40-4	5 9
Cooling manure surface		45	5 4:	5 13
Floating balls on manure surface (cat. 2)		25	14	1 :
Air scrubbing techniques		70-90	35-50	7-10
Piglets after weaning	0.65			
Partially slatted floor with reduced pit		25-35	5 () (
Frequent manure removal with vacuum system		25	0	· 0
Partly slatted floors and flushing gutters		65	5 4	5 1-
Partly slatted floor and collection in acidified liquid		60) :	5 1:
Partly slatted floor and cooling manure surface		75	3	4 7-10
Partly slatted floor and manure channel with slanted walls		65	5	2 5-6
Floating balls on manure surface (cat. 2)		25	5	1 6–1
Air scrubbing techniques		70-90	4-	5 8-12
Growers-finishers	3.0			
Partially slatted floor with reduced pit		15-20) () (
Frequent manure removal with vacuum system		25	0	0
Partially slatted floor with water and manure channel		40) :	2 3
Partially slatted floor with water channel and manure channel with slanted walls		60-65	3-3	5 2-
Flushing gutters		40	10-1:	5 10-1:
Partially slatted floor and cooling manure surface		45	5 5—	7 4-0
Floating balls on manure surface (cat. 2)		25	5 2	2 4
Partially slatted floors and separated removal of liquid and solid manure fraction by V-shaped belt (cat. 2)		70	0-:	5 0-
Air scrubbing techniques		70-90	10-1:	5 5-9

Bittman et al., 2014

Note: For economic cost of the abatement techniques, see Reis (forthcoming). $^{\alpha}$ Prices are calculated based on new buildings. Only cooling systems, floating balls and scrubbers can be installed in existing buildings, see text for explanation about retrofitting.

b If vacuum manure removal system is already installed.

Foto: Intia

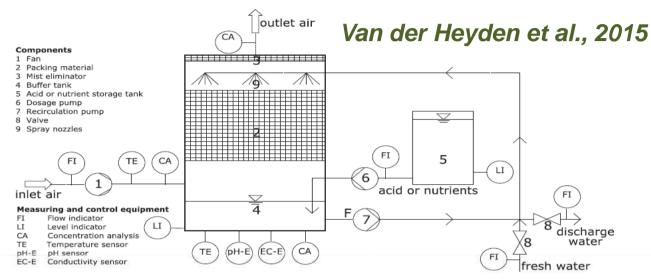
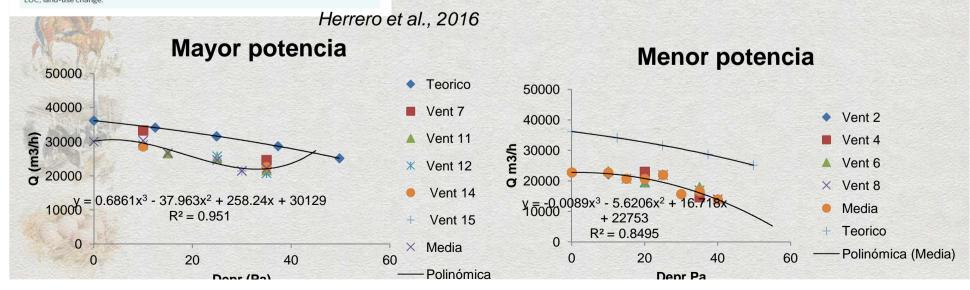


Fig. 1 – Simplified process diagram of a counter-current air scrubber. The storage tank of a chemical air scrubber contains acid. For a biological air scrubber a storage tank is optional and may contain necessary nutrients for the microorganisms.

D	Type of air scrubber	Country animals	range mean ± stdev	NH ₃ (%) range mean ± stdev	Odour (%) range mean ± stdev	N ₂ O (%) range mean ± stdev	CH ₄ (%) range mean ± stdev	PM ₁₀ (%) range mean ± stdev	PM _{2.5} (%) range mean ± stdev	Reference
1	Chemical	NL Pigs	>0.9	77 to 97 91	27 to 66	127	- 22	100	1.00	Vrielink, Verdoes, and van Gastel (1997); Melse and Ogink (2005)
2	Chemical	NL Poultry	/=	40 to 99 90		/=	_	_	-	Hol and Satter (1998); Melse and Ogink (2005)
3	Chemical	NL Pigs	>0.5	90 to 100 99	-	-	-	-	-	Verdoes and Zonderland (1999); Melse and Ogink (2005)
4	Chemical	NL Poultry	>0.4	76 to 100 95	-	3.5	===	::	:-:	Hol, Wever, and Groot Koerkamp (1999); Melse and Ogink (2005)
5	Chemical ^a	NL Poultry	>0.4	96 to 100 98		V-2	-		-	Wever and Groot Koerkamp (1996 Melse and Ogink (2005)
6	Chemical (90% ammonia)	NL Poultry	0.2-2	30 to 99 77 ± 31	-10 to 80 48 ± 22	-30 to 20 1 ± 12	-60 to 50 -1 ± 25	5 to 60 33 ± 17	0 to 55 28 ± 22	Mosquera et al. (2011): Melse, Hofschreuder et al. (2012)
7	Chemical (70% ammonia)	NL Pi/Po	0.2-1.8	45 to 99 76 ± 20	-20 to 80 19 ± 28	-25 to 25 -1 ± 12	-90 to 20 -5 ± 31	20 to 65 41 ± 20	0 to 80 33 ± 23	Mosquera et al. (2011); Melse, Hofschreuder et al. (2012)
8	Chemical	DE Pigs	0.5-2.9	87 to 89 88 ± 1	= -		=	81 to 99 ^b 89 ± 8	-	DLG5957 (2011)
9	Chemical (pH < 7) (biological)	NL Poultry	0.56	48 to 85 69 ± 13	-23 to 43 17 ± 25	-17 to 3 -5 ± 7	-9 to 12 2 ± 8	11 to 84 44 ± 26	13 to 46 31 ± 17	Melse, van Hattum et al. (2012) Melse, Hofschreuder et al. (2012)
10	Biological (70% ammonia)	NL Pigs	0.4-1.8	50 to 85 76 ± 16	5 to 65 42 ± 30	-120 to -20 -70 ± 42	-5 to 10 4 ± 7	45 to 50 48 ± 4	10 to 50 37 ± 16	Mosquera et al. (2011); Melse, Hofschreuder et al. (2012)
11	Biological (70% ammonia)	NL Pi/Po	3.2-4.5	10 to 99 59 ± 33	-60 to 60 -3 ± 49	-400 to -5 -208 ± 154	-5 to 50 10 ± 17	45 to 90 74 ± 13	60 to 90 75 ± 11	Mosquera et al. (2011); Melse, Hofschreuder et al. (2012)

Energía


Table 1 | Current global greenhouse gas emissions from livestock (~1995-2005).

Emissions source	Emissions (GtCO ₂ e)	Reference
Feed N ₂ O	1.3-2.0 [‡]	9,13,15,16-18
Feed CO ₂ (LUC excluded)	0.92	15,17,18
Feed CO ₂ (LUC)	0.23	15,17,18
Pasture expansion CO ₂ LUC	0.43	15,17,18
Feed CH₄ rice	0.03	15,17,18
Enteric CH ₄ *	1.6-2.7	9-13,15,17
Manure CH ₄ *	0.2-0.4	9-13,15,17,18
Manure N ₂ O*	0.2-0.5	9-13,15-18
Direct energy CO ₂	0.11	15,17,18
Embedded energy CO ₂	0.02	15,17,18
Post-farm gate CO ₂	0.023	15,17,18
Non-CO ₂ emissions* (IPCC guidelines)	2.0-3.6	This Review
Total emissions (LCA approach)†	5.6-7.5	This Review

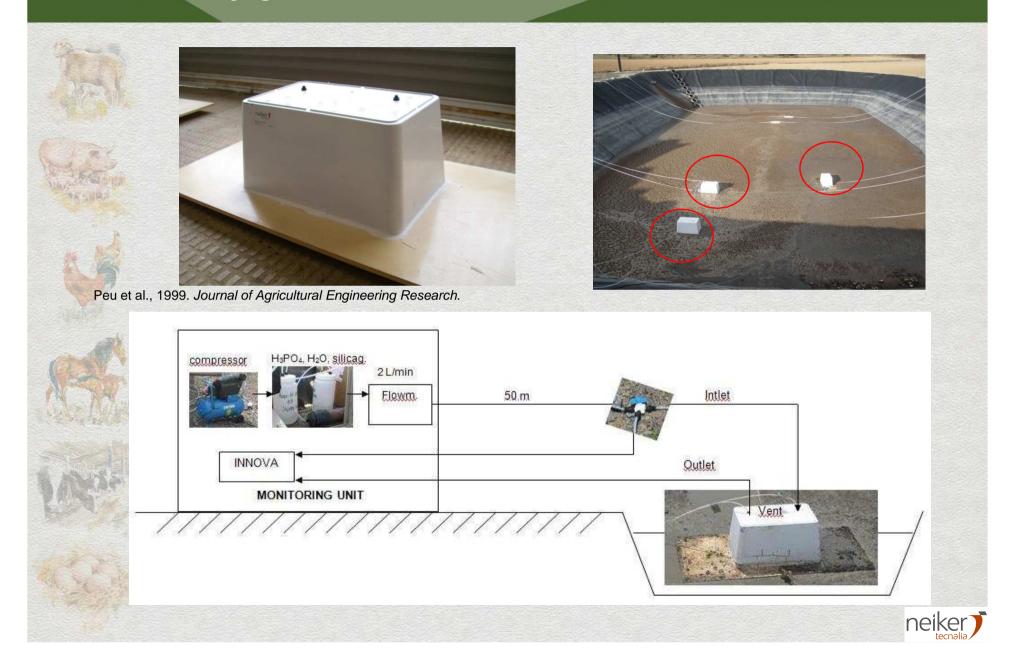
*Livestock emissions according to IPCC emissions guidelines[®]. [®]Range estimated using information from global analyses for key emissions source categories. LCA as implemented by FAO[®]. [®]Includes N₂O emissions from manures applied to pastures, and from fertilizers to croplands for both feed and pasture. Emissions from manure applied to pastures ranges from 0.42–0.95 GtCO₂e.

- -Aislamiento
- -Equipos eficientes
- -Registro de consumos
- -Control y mantenimiento de la ventilación
- -Limpieza ventiladores. Ventiladores nuevos/ viejos
- -Control de las tarifas

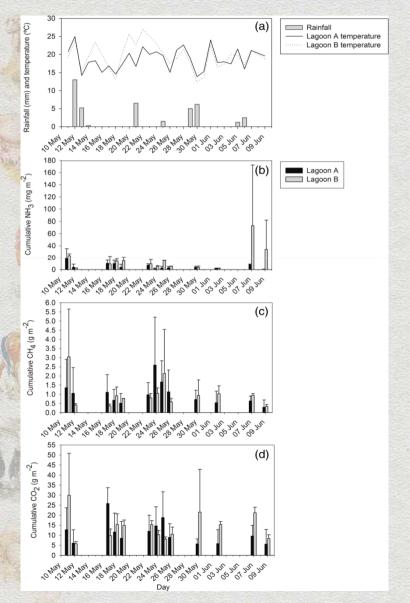
10% ahorro potencial por registro regular en sectores porcino y avícola en UK (Warwick, 2.0.07)

3. ALMACENAMIENTO GANADERO. MITIGACION NH₃

- 1. Minimizar agitación, volteos.
- 2. Reducir pH
- 3. Reducir superficie emisión (cubiertas, costra, profundidad)
- 4. Bajas temperaturas


Table ES4

Ammonia emission reduction techniques for manure storages, their emission reduction levels and associated costs


Techniques	Emission reduction (%)	Cost (€ per m³ per year)	Cost (€ per kg NH3-N saved)
Tight lid	> 80	2–4	1–2.5
Plastic cover	> 60	1.5–3	0.5-1.3
Floating cover	> 40	1.5–3*)	$0.3-5^a$

^a Not including crust; crusts form naturally on some manures and have no cost, but are difficult to predict.

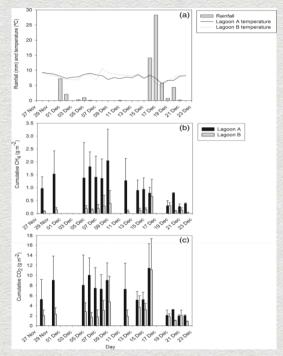
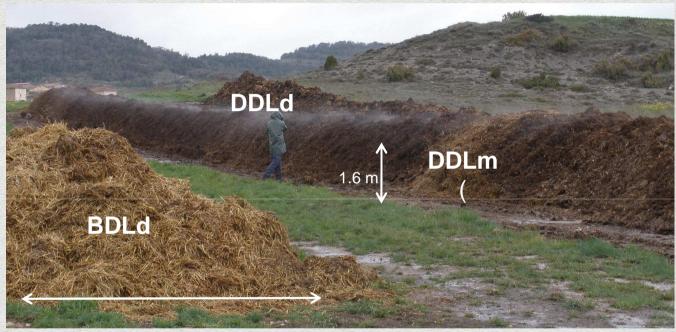
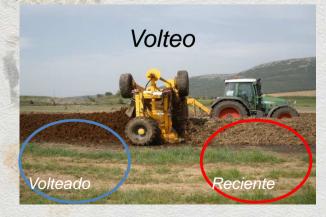


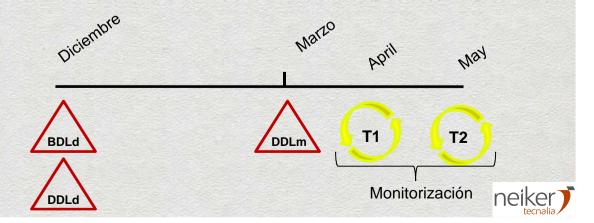
Table 1 Ammonium-nitrogen (NH₄+N) concentration, slurry temperature, pH, and free ammonia (FA) concentration estimation from literature (stored pig slurry) and the current spring and autumn studies

Reference		NH ₄ +-N (g N [1])	Temperature (°C)	pH	FA (mg NH ₃ -N Γ ¹)
Blunden and Aneja (2008)		0.57	15	8.1	18.8
James et al. (2012)		0,55	20	8.0	20.7
Lim et al. (2003)		2.06	25	8.1	137.4
Current spring study*	Lagoon A	3.48	19	6.7	7.7
	Lagoon B	5.00	20	6.5	6.1
Current autumn study ^b	Lagoon A	2.33	8	6.9	2.6
	Lagoon B	4.23	8	6.8	4.5

Average value in lagoon A and B, respectively, during spring study


b Average value in lagoon A and B, respectively, during autumn study




Almacenamiento de material de cama y volteos

Ganado vacuno leche y carne Cama de paja Dos volteos

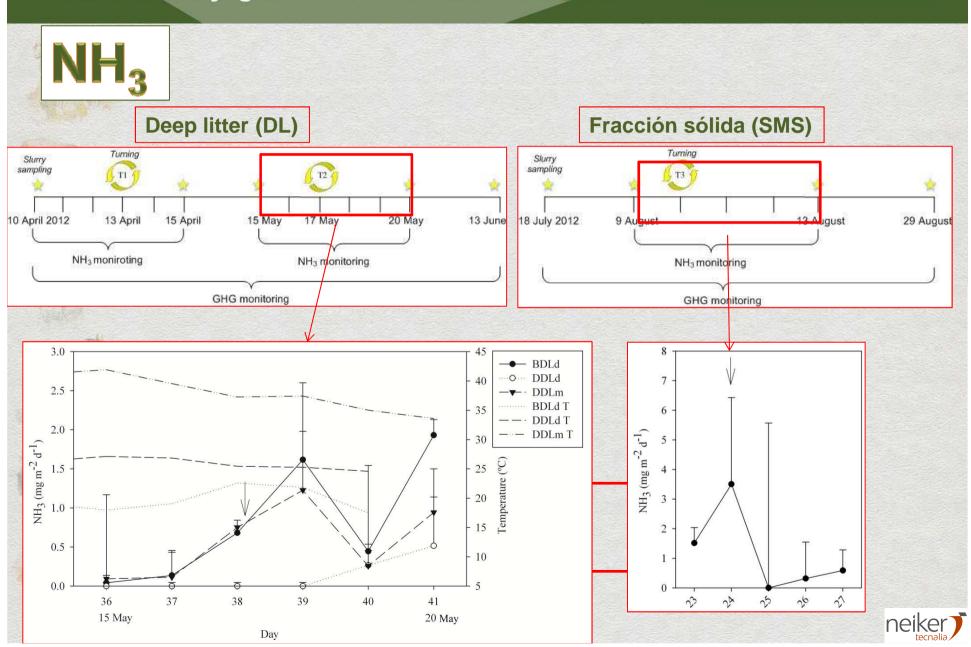
Fracción sólida y volteo

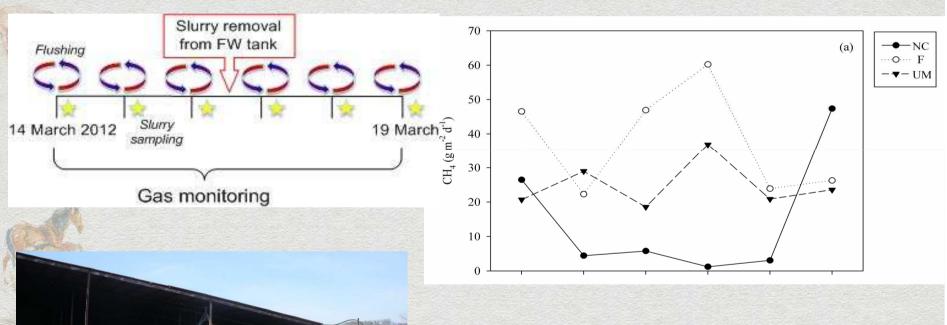
Vacuno de leche

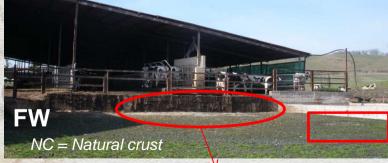
3 volteos

Flushing

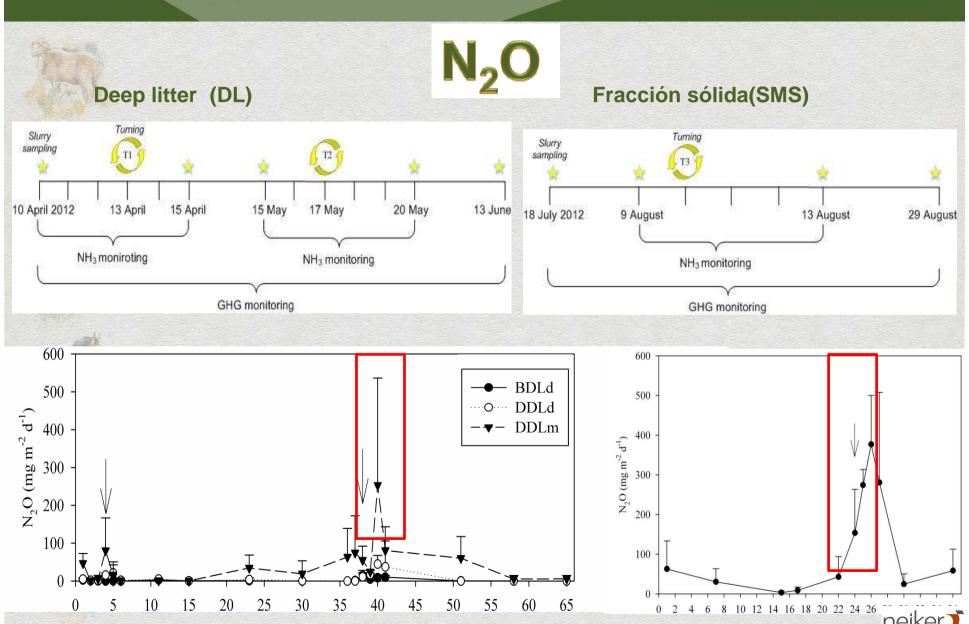
Vacuno de leche. Separación no mecáncia Flushing







Separated fractions from non-mechanical separation (FW and LM)



UM = Uncovered manure

F = Wastewater receiving zone after flushing

Hexacover

Ammonia emission reduction techniques for manure storages, their emission reduction levels and associated costs

Techniques	Emission reduction (%)	Cost (€ per m³ per year)	Cost (€ per kg NH ₃ - save
Tight lid	> 80	2–4	1-2.5
Plastic cover	> 60	1.5-3	0.5-1.3
Floating cover	> 40	1.5-3*)	0.3-5 ^a

^a Not including crust; crusts form naturally on some manures and have no cost, but are difficult predict.

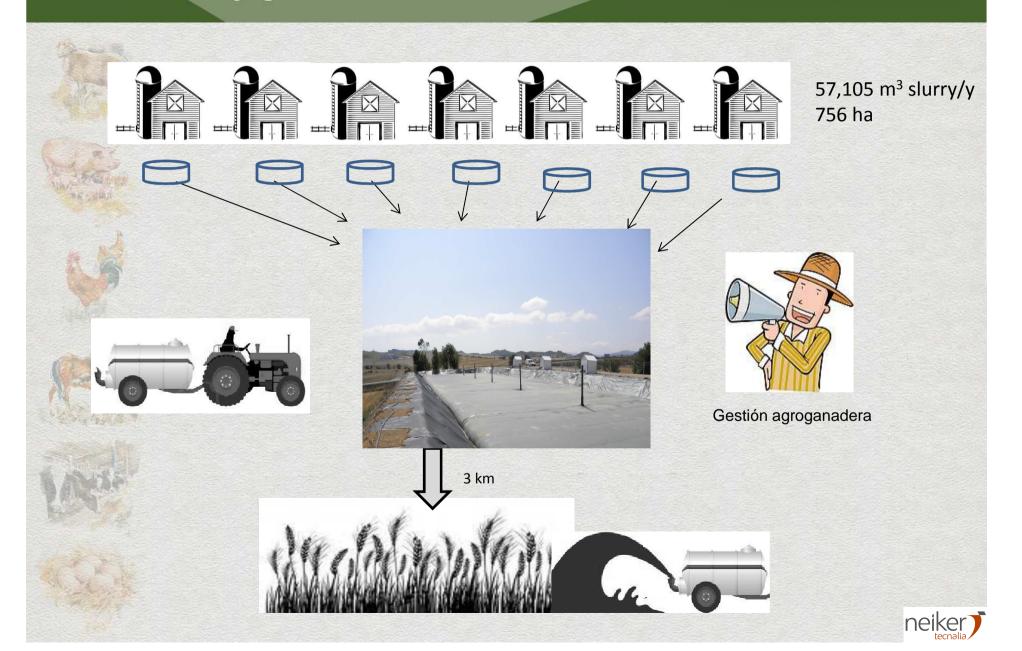
Bittman et al., 2004

Costra natural: ↓ 60% NH₃

Posible N₂O, según grosor y permeabilidad nitrificación en capas superiores y desnitrificación a profundidad (Nielsen et al., 2010, Hansen et al., 2009)

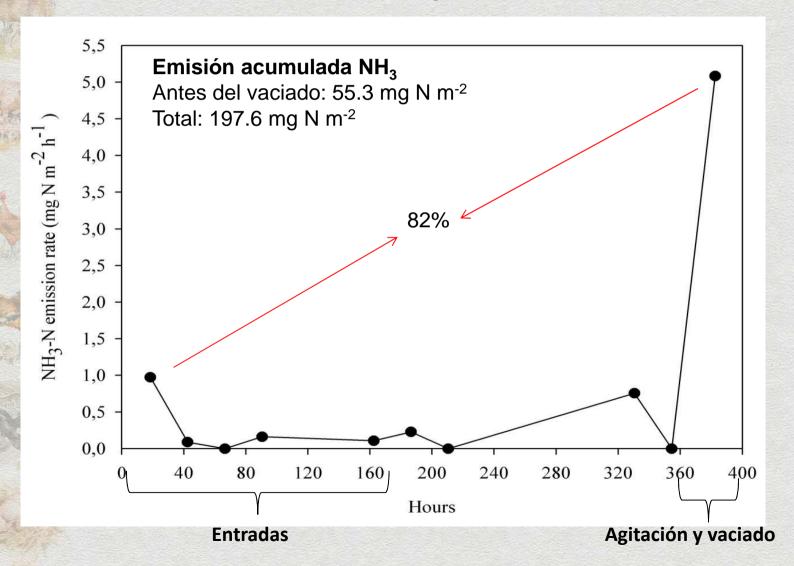
Table 5 – Summary of the performances of permeable and impermeable covers in abating ammonia emissions from livestock manure storages

Cover type (s)	Emission reduction (%)	References
Polyethylene	80–100	Funk et al. (2004), Scotford and Williams (2001), Miner et al. (2003)
Tarpaulin	99.5	Funk et al. (2004)
Oil films	40–100	Heber et al. (2005), Guarino et al. (2006), Portejoie et al. (2003), Hornig et al. (1999)
Geotextile cover	44	Bicudo et al. (2004)
Straw covers	37–90	Clanton et al. (2001), Sommer et al. (1993), Homig et al. (1999), Guarino et al. (2006), Xue et al. (1999), Miner and Pan (1995)
Surface crust, peat, & PVC foil	24–32	Sommer et al. (1993)
Leca rock	14-87	Sommer et al. (1993), Balsari et al. (2006)
Polymer composite	17-54	Zahn et al. (2001)
Pegulit	91	Hornig et al. (1999)
Wood chips	17-91	Guarino et al. (2006)
Corn stalks	37-60	Guarino et al. (2006)
Zeolite on permeable cover	90	Miner and Pan (1995)
Polystyrene foam	45-95	Miner and Suh (1997)

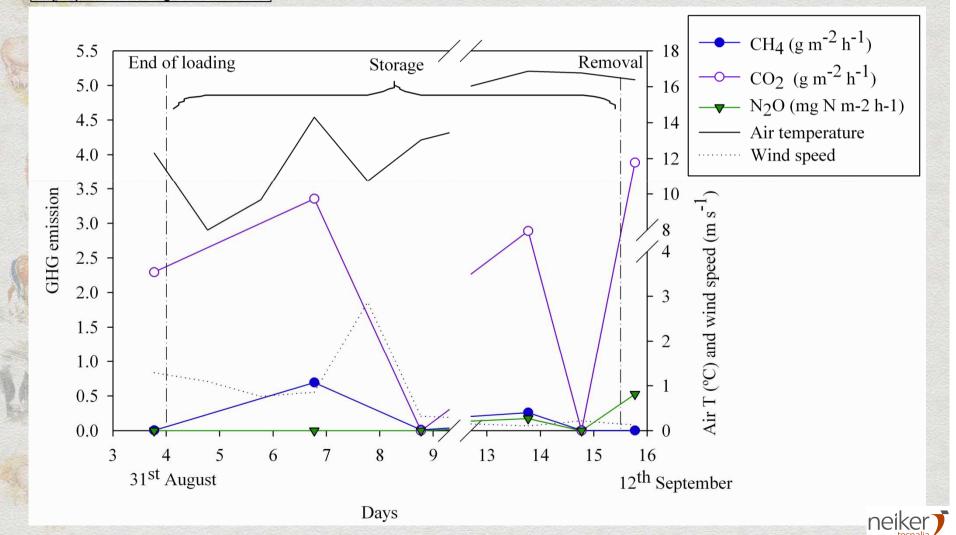

Emisiones de NH₃ y GEI desde una cubierta flexible

Viguria M, Sanz-Cobeña A, Lópe D, Arriaga H, Merino P

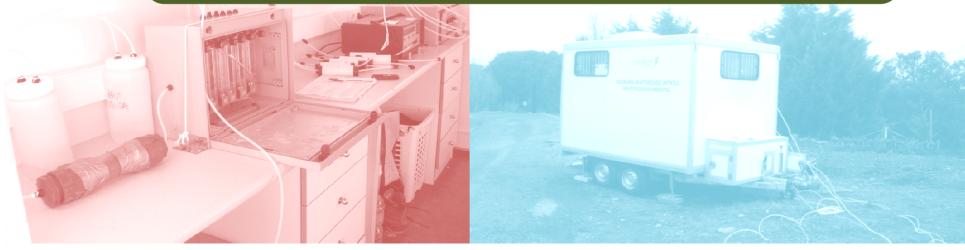
Agriculture, Ecosystems and Environment 199 (2014) 261–271



EMISION DE NH₃



CH₄ range 0.01 - 0.69 g m⁻² h⁻¹ CO₂ range 0.01 - 4.0 g m⁻² h⁻¹ N₂O peak 0.53 mg N m⁻² h⁻¹



4. CONCLUSIONES

- •Existen buenas prácticas aplicables a sistemas productivos de pequeña escala
- •Colaboración con los productores para identificar el potencial de mitigación de diferentes manejos
- •Reflejar progresivamente en los inventarios cambios en las prácticas ganaderas que permitan considerar las mejoras implantadas.

